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Abstract

Existing pedestrian attribute recognition (PAR) algorithms
are primarily developed based on static images, but their per-
formance is not reliable when dealing with challenging fac-
tors such as severe occlusion and motion blur. This study
proposes a method to understand human attributes using
video frames to make full use of temporal information. Given
that the large model CLIP performs well in aligning visual
and language modalities, we formulate the video-based PAR
problem as a vision-language fusion problem and utilize the
pre-trained CLIP model to extract feature embeddings from
the provided video frames.

Introduction
Pedestrian Attribute Recognition (PAR) (Wang et al. 2022;
Cheng et al. 2022) is a very important research topic in
computer vision and gets boosted greatly with the help of
deep learning. Many representative PAR models are pro-
posed in recent years based on convolutional neural net-
works (CNN) (He et al. 2016a), and recurrent neural net-
works (RNN) (Chung et al. 2014). Wang et al. (Wang et al.
2017) propose the JRL which learns the attribute context
and correlation in a joint recurrent learning manner us-
ing LSTM (Hochreiter and Schmidhuber 1997). The self-
attention based Transformer networks are first proposed to
handle the natural language processing tasks and then are
borrowed into the computer vision community (Vaswani
et al. 2017; Dosovitskiy et al. 2020; Wang et al. 2023;
Zhao et al. 2023; Wang et al. 2021) due to their great per-
formance. Some researchers also exploit the Transformer
for the PAR problem to model the global context infor-
mation (Tang and Huang 2022; Cheng et al. 2022). DR-
Former (Tang and Huang 2022) is proposed to capture the
long-range relations of regions and relations of attributes.
VTB (Cheng et al. 2022) is also developed to fuse the image
and language information for more accurate attribute recog-
nition. In addition to understanding the pedestrian images
using the attributes, this task also serves other computer vi-
sion problems, such as object detection (Zhang et al. 2020),
person re-identification (Zheng et al. 2022), etc. Despite the
great success of PAR, these works are developed based on
a single RGB frame only which ignores the temporal infor-
mation and maybe obtains sub-optimal results in practical
scenarios.

As mentioned in work (Chen, Li, and Wang 2019), the
video frames can provide more comprehensive visual infor-
mation for the specific attribute, but the static image fails to.
The authors propose to understand human attributes using
video clips and propose large-scale datasets for video-based
PAR. They also build a baseline by proposing the multi-
task video-based PAR framework based on CNN and tem-
poral attention. Better performance can be obtained on their
benchmark datasets, however, we think the following issues
still limit their overall results. Firstly, they adopt CNN as the
backbone network to extract the feature representation of in-
put images which learns the local features well. As is known
to all, global relation in the pixel-level space is also very
important for fine-grained attribute recognition. Several re-
searchers resort to the Transformer network to capture such
global information (Dosovitskiy et al. 2020; Vaswani et al.
2017), however, their models can work for image-based at-
tribute recognition only. Secondly, the authors formulate the
video-based PAR as a multi-task classification problem and
try to learn a mapping from a given video to attributes. The
attribute labels are transformed into binary vectors for net-
work optimization. However, the high-level semantic infor-
mation is greatly lost which is very important for pedestrian
attribute recognition.

To address the aforementioned two issues, in this pa-
per, we propose a novel CLIP-guided Visual-Text Fusion
Transformer for Video-based Pedestrian Attribute Recogni-
tion. As shown in Fig. 1, we take the video frames and at-
tribute set as the input and formulate the video-based PAR
as a multi-modal fusion problem. To be specific, the video
frames are transformed into video tokens using a pre-trained
CLIP (Radford et al. 2021) which is a multimodal big model.
The attribute set is transformed into corresponding language
descriptions using split, expand, and prompt engineering.
Then, the text encoder of CLIP is used for the language
embedding. After that, we concatenate the video and text
tokens and feed them into a fusion Transformer for multi-
modal information interaction which mainly contains layer
normalization, multi-head attention, and MLP (Multi-Layer
Perceptron). The output will be fed into a classification head
for pedestrian attribute recognition.

To sum up, the main contributions of this paper can be
concluded as following two aspects:

• We propose a novel CLIP-guided Visual-Text Fusion



Figure 1: An overview of our proposed CLIP-guided Visual-
Text Fusion Transformer for video-based PAR.

Transformer for Video-based Pedestrian Attribute Recogni-
tion, which is the first work to address the video-based PAR
from the perspective of visual-text fusion.

• We introduce the pre-trained big model CLIP as our
backbone network, which makes our model robust to the
aforementioned challenging factors. Extensive experiments
validated the effectiveness of our proposed model.

Related Work
Pedestrian Attributr Recognition. Current pedestrian at-
tribute recognition (PAR) can be divided into two main
approaches: RGB frame-based and video-based methods.
In RGB frame-based PAR, early research primarily fo-
cused on analyzing pedestrian attributes through multi-
label classification using convolutional neural networks
(CNNs).Recently, Transformers, with self-attention as their
core operation, have gained increasing attention in the ar-
tificial intelligence community. Many PAR methods have
also been developed based on Transformer networks. For
instance, one approach introduces a PARformer to ex-
tract features by integrating global and local perspec-
tives, replacing traditional CNNs. Another method, VTB,
presents a novel baseline by incorporating an additional
text encoder to enable interaction between different types
of information.Video-based pedestrian attribute recognition
(PAR) leverages temporal information, making it more ef-
fective than static image-based methods in handling chal-
lenging scenarios such as occlusion and motion blur. Early
approaches primarily used convolutional neural networks
(CNNs) to extract features from multiple frames and ap-
plied temporal aggregation methods like average pooling or
RNNs, but they struggled to capture dynamic patterns be-
tween frames. With the growing adoption of Transformers,
models utilizing self-attention mechanisms have been intro-
duced, enabling the effective modeling of both global and
local temporal dependencies in video PAR. Additionally, the
emergence of large pre-trained models (e.g., CLIP) has ad-
vanced the development of vision-language fusion methods,
aligning video frames with attribute descriptions and en-
abling multi-modal learning through Transformers, signifi-
cantly improving recognition performance.
Pretrained Vision-Language Models. Integrating pre-
trained vision-language models into pedestrian attribute
recognition (PAR) has opened new opportunities for en-

hancing the performance of traditional methods. While early
PAR approaches primarily focused on extracting visual fea-
tures using convolutional neural networks (CNNs) and per-
forming multi-label classification, these methods faced lim-
itations when dealing with complex scenarios such as occlu-
sion, motion blur, or ambiguous visual cues. The recently
adopted vision-language models provide an innovative solu-
tion by combining semantic information from visual inputs
and attribute descriptions.

Pretrained models like CLIP and ALIGN demonstrate sig-
nificant potential in PAR by aligning visual and textual fea-
tures in a shared latent space. These models are trained on
large-scale image-text pairs, enabling the system to recog-
nize attributes through text prompts, even achieving zero-
shot learning without additional task-specific fine-tuning.
This capability addresses a key challenge in PAR—handling
unseen or rare attributes—by transforming attribute predic-
tion into a multi-modal alignment task.

Method
In this section, we elaborate on our proposed framework,
describing its Input Processing and Embedding, Multimodal
Fusion Transformer, and Optimization.

Input Processing and Embedding
Given the video frames V = {v1, v2, ..., vT } and attribute
list A = {a1, a2, ..., aM}, we preprocess the inputs to better
utilize the pre-trained CLIP model.

The initial video frames V are zero-padded to the resolu-
tion of 224× 224 which is required by the pre-trained CLIP
model. The padded frames are then sliced into patches and
processed by the CLIP visual encoder to obtain embedded
tokens. Consequently, the input frames are embedded into
a set of visual tokens T × N × d where N is the number
of tokens in a frame and d is the dimension of each token.
We average these features into a tensor Fv ∈ RN×d =
{f1, f2, ..., fT } along the temporal channel. In our case,
N = 197 and d = 512 since we select ViT-B/16-based CLIP
as the backbone.

The attribute set A is processed into corresponding natu-
ral language descriptions to make full use of CLIP’s text en-
coder. Specifically, we split and expand each attribute to ob-
tain the corresponding natural phrases. For example, “Age ≤
40” is processed into “age less than 40”. Then, prompt engi-
neering is adopted to further transform the phrases into nat-
ural language descriptions using carefully designed prompt
templates. For example, age less than 40 is transformed into
“the pedestrian has an attribute age less than 40”. After all
the attributes are processed, we adopt the text encoder of
CLIP to get the text tokens Ft = {t1, t2, ..., tM}.

Finally, the video tokens Fv and text tokens Ft are con-
catenated into [Fv, Ft] as the input of fusion Transformer.

Multimodal Fusion Transformer
We adopt the multimodal Transformer to fuse and enhance
vision and language features. As shown in Fig. , the input
vision and language tokens are first normalized by Lay-
erNorm(Xiong et al. 2020; Ba 2016), and then, these to-
kens are linearly transformed into three branches: query,



key and value, namely Q, K and V . Multi-Head Atten-
tion (MHA)(Vaswani et al. 2017) fuses the features of
these tokens. Formally, the MHA layer can be expressed as
MHA(Q,K, V ) = softmax(QKT

√
d
)V , where KT denotes

the transposed K and d denotes the feature dimensions. The
enchanced tokens are further transformed by another Lay-
erNorm and an MLP. Two residual connections(He et al.
2016b) are used following the original Transformer achitec-
ture.

Because the MARS(Zheng et al. 2016) dataset has 43 at-
tributes, in our practical implementation, 43 fully connected
layers are used as the classification head.

Optimization
In this work, the video-based PAR task is formulated as a
video-text fusion problem. Given the annotated attribute and
raw video, we can train our framework in an end-to-end
manner using supervised learning. The binary cross-entropy
loss function is adopted for the optimization.

Experiments
Dataset, Metric, and Implementation Details
In our experiments, the MARS dataset (Chen, Li, and Wang
2019) and DukeMTMC-VID-Attribute dataset (Ristani et al.
2016) proposed by Chen et al. are used for both training and
testing. The training subset of MARS contains 8,298 track-
lets from 625 people, and the testing subset contains 8,062
tracklets corresponding to 626 pedestrians. For each track-
let, there are 60 frames on average. The training subset of
DukeMTMC-VID contains 702 different ID pedestrians and
16522 images and the testing subset contains 17661 images
corresponding to 702 pedestrians. For each sequence, there
are 169 frames on average, from which we randomly se-
lected 6 frames for training and testing.For the evaluation
of our and the compared PAR models, we adopt the widely
used Precision, Recall, and F1-score as the evaluation met-
ric. Note that, the results reported in our experiments are
obtained by averaging these metrics for multiple attribute
groups.

The ViT-B/16 version of pre-trained CLIP is used in our
experiments. In the training phase, the parameters of CLIP
encoder are fixed. The learning rate of our model is 0.001,
weight decay is 1e-4. Our model is trained for a total of 20
epochs. The Adam (Kingma and Ba 2014) is adopted as our
optimizer. Our model is implemented using Python and Py-
Torch (Paszke et al. 2019) framework and trained on a server
with RTX3090s.

Compare with Other SOTA Models
In the experiments, we compare our model with multi-
ple strong baseline methods on the MARS dataset, in-
cluding 3DCNN (Ji et al. 2012), CNN-RNN (McLaugh-
lin, Del Rincon, and Miller 2016), VideoPAR (Chen, Li,
and Wang 2019), and VTB (Cheng et al. 2022). As shown
in Table 1, we can find that our model beats all these
compared methods by a large margin. Specifically, the
VTB (Cheng et al. 2022) achieves 78.96, 78.42, 78.32 on

Table 1: Results on MARS and DUKE video-based PAR
dataset. w/o denotes without the following module.

Methods Backbone
MARS DukeMTMC-VID

Prec Recall F1 Prec Recall F1
3DCNN - - - 61.87 - - 62.93
CNN-RNN - - - 70.42 - - 71.63
VideoPAR(Image) ResNet50 - - 67.28 - - 69.66
VideoPAR(Video) ResNet50 - - 72.04 - - 68.71
VTB ViT-B/16 78.96 78.42 78.32 77.23 81.44 78.83
Ours ViT-B/16 81.76 82.95 81.94 78.19 83.18 80.45
Improvements - +2.80 +4.53 +3.62 +0.60 +0.13 +0.53

Table 2: Results on MARS and DUKE video-based PAR
dataset. F1-score are reported for all the assessed attributes.

Attribute
VideoPAR 3DCNN CNN-RNN VideoPAR Ours

(Image) (Video)
top length 58.72 56.37 65.18 71.61 97.26
bottom length 92.29 89.35 93.33 93.90 93.69
shoulder bag 72.57 61.30 75.89 76.08 65.61
backpack 85.95 76.58 87.17 87.62 82.08
hat 57.57 57.69 77.74 77.84 72.76
hand bag 62.82 59.90 71.68 73.55 59.08
hair 86.91 82.77 87.11 88.17 86.37
gender 90.89 85.75 92.44 92.50 92.88
bottom type 81 .69 72.86 84.16 86.62 97.21
pose 56.91 47.69 58.36 61.36 74.84
motion 39.39 33.64 43.92 43.69 93.50
top color 72.72 65.63 69.28 71.44 74.97
bottom color 44.63 40.39 39.68 43.98 69.76
age 38.87 36.22 39.93 40.21 87.07
Average-F1 67.28 61.87 70.42 72.04 81.94

the Precision, Recall, and F1-score on this dataset, mean-
while, ours are 81.76, 82.95, 81.94, the improvements are
+2.80,+4.53,+3.62 on these metrics. Our results are also
better than the VideoPAR proposed by Chen et al. (the video-
based version, F1 score 72.04) by exceeding +9.9. For the
fine-grained attribute results, we report them in Table 2.
These experiments fully validated the effectiveness and ad-
vantages of our model.

Ablation Study
Component Analysis. In our proposed framework, the fu-
sion Transformer and pre-trained CLIP backbone are our
key components. In this section, we analyze the two com-
ponents and report the recognition results in Table 1. The
VTB (Cheng et al. 2022) is our baseline which adopts the
standard ViT-B/16 model as the backbone, and it achieves
78.96/78.42/78.32 on Precision, Recall, and F1-score. When
the CLIP model is used, the results can be improved to
81.76/82.95/81.94, which validated the effectiveness of the
pre-trained big model for video-based PAR. When replac-
ing the FusionFormer using regular fully connected lay-
ers, the results are dropped from 81.76, 82.95, 81.94 to
77.60, 81.32, 78.69, which demonstrates that this fusion
module also contributes to our final performance.
Visualization. In addition to the aforementioned quantita-
tive analysis, we also give a qualitative analysis in this sub-



Figure 2: Visualization of our predictions and Ground Truth
(GT).

section. As shown in Fig. 2, we can find that our model pre-
dicts human attributes accurately.

Conclusion
In this paper, we formulate the video-based PAR task as
a vision-language fusion problem, and resolve it with pre-
trained CLIP encoder and Visual-Text Fusion Transformer.
More in detail, we extract features embeddings of given
video frames with CLIP, and fuse them with attribute list
to better utilize the semantic informaction. The fusion is
achieved by our adopted Visual-Text Transformer. The en-
hanced tokens are fed to a classification head for PAR.
We conduct extensive experiments on MARS, a large-scale
video-based PAR dataset, and demonstrate that our model
reaches superior recognition performance.

In our future work, we will design finer-grained partial re-
gion mining modules to realize higher performance in PAR.
Besides, it can be worthwhile to introduce advanced prompt
learning and tuning techniques to large model guided PAR.
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